Information and recommendations for doctors at hospitals/emergency departments

- Patients whose clothing or skin is contaminated with nitric acid can cause secondary contamination of rescue and medical personnel by direct contact or by release of nitric acid vapor or fumes.

- Nitric acid and its vapor or fumes are rapidly corrosive when they come in contact with tissues such as the eyes, skin, and upper respiratory tract causing irritation, burns, coughing, chest pain and dyspnea. Laryngospasm and pulmonary edema (shortness of breath, cyanosis, expectoration, cough) may occur.

- Ingestion of nitric acid can cause severe corrosive injury to the lips, mouth, throat, esophagus, and stomach.

- There is no antidote to be administered to counteract the effects of nitric acid. Treatment consists of supportive measures.

1. Substance information

Nitric acid (HNO₃), CAS 7697-37-2
Synonyms: hydrogen nitrate, azotic acid.
At room temperature nitric acid is a colorless to yellow or brownish-red liquid with a choking odor. The color is due to the release of oxides of nitrogen, especially nitrogen dioxide, into the air upon exposure to light. Depending on environmental factors the vapor or fumes of nitric acid may actually be a mixture of various oxides of nitrogen and nitric acid, even at temperatures well below the boiling point of 83°C (181°F). Nitric acid may be formed in photochemical smog from the reaction between nitric oxide and hydrocarbons.
Nitric acid itself is nonflammable, but it can increase the flammability or cause the spontaneous combustion of other materials. It is soluble in water.
Nitric acid is used in the manufacture of fertilizers, gunpowder and explosives, pesticides, dyestuffs, and pharmaceuticals, especially in the manufacture of organic and inorganic nitrates. It is also used for etching and cleaning of metals, and electroplating.

2. Routes of exposure

Inhalation
Nitric acid’s odor and irritant properties generally provide adequate warning of acutely hazardous concentrations.

Skin/eye contact
Direct contact with liquid nitric acid or concentrated vapor or fumes on wet or moist skin causes severe chemical burns. Nitric acid is poorly absorbed through the skin.

Ingestion
Ingestion of nitric acid can cause severe corrosive injury to the lips, mouth, throat, esophagus, and stomach.

3. Acute health effects

Respiratory

Nitric acid exposure usually causes dryness of the nose and throat, and coughing. Inhalation of very high concentrations may result in laryngospasm and eventually in obstruction of the airways and death. Development of respiratory distress with chest pain, dyspnea and pulmonary edema (shortness of breath, cyanosis, expectoration) may occur after a delay of up to 24 hours.
Hematologic

Only after high-dose exposure methemoglobinemia may result, but usually to an extent that does not require treatment. For further information on methemoglobinemia see BASF Chemical Emergency Medical Guideline for ANILINE.

Gastrointestinal

Epigastric pain, nausea, and vomiting may occur. In cases of ingestion diffuse corrosive mucosal injury can involve the entire intestinal tract.

Renal

Acid-base imbalance and acute renal failure may occur.

Dermal

Deep burns of the skin and mucous membranes may be caused by contact with concentrated nitric acid; sometimes yellowing of the skin results. Contact with less concentrated nitric acid vapor or fumes can cause burning pain, redness, and inflammation.

Ocular

Severe eye burns with clouding of the surface, perforation of the globe, and ensuing blindness may occur from exposure to liquid nitric acid. Low concentrations of vapor or fumes cause burning discomfort, spasmodic blinking or involuntary closing of the eyelids, redness, and tearing.

Potential sequelae

Skin, eye, and mucous membrane damage caused by chemical burns may be irreversible, e. g. gangrene, blindness, or narrowing of the esophagus. After inhalation, complete recovery is usual; however, symptoms and pulmonary deficits may persist. Permanent restrictive and obstructive lung disease may occur from bronchiolar damage. Pulmonary tissue destruction and scarring may result in chronic dilation of the bronchi and increased susceptibility to infection. Yellow discoloration or erosion of teeth can occur from prolonged exposure.

4. Actions

Self-protection

Patients whose clothing or skin is contaminated with nitric acid can secondarily contaminate other people by direct contact or through nitric acid vapor or fumes.

Decontamination

All patients exposed to nitric acid require decontamination. Patients who are able and cooperative may assist with their own decontamination. If the exposure involved liquid nitric acid and if clothing is contaminated, remove and double-bag the clothing.

Assure that exposed or irritated eyes have been irrigated with plain water or saline for at least 20 minutes, and that the pH of the conjunctival fluid has returned to normal (7.0). If not, continue eye irrigation during other basic care and transport. If eye irrigation is impaired by blepharospasm, one to two drops of oxybuprocaine 0.4% may be instilled into affected eyes to allow adequate irrigation. Remove contact lenses if present and easily removable without additional trauma to the eye.

Assure that exposed skin and hair have been flushed with plain water for at least 15 minutes. If not, continue flushing during other basic care and transport. Protect eyes during flushing of skin and hair.

Initial treatment

Therapy will be empiric; there is no specific antidote to be administered to counteract the effects of nitric acid.

The following measures are recommended if the airborne exposure concentration is 10 ppm or greater, if symptoms, e. g. eye irritation or pulmonary symptoms have developed, or if no exposure concentration can be estimated but exposure has possibly occurred:

If not already done, initially, administration of 8 puffs of beclomethasone (800 mg beclomethasone dipropionate) from a metered dose inhaler.

Thereafter, administration of 4 puffs every 2 hours for 24 hours. At an exposure concentrations of 50 ppm or greater, establishment of intravenous access and intravenous administration of 1.0 g methylprednisolone (or an equivalent steroid dose) should be considered, if not already administered.
Note: Efficacy of corticosteroid administration has not yet been proven in controlled clinical studies.

If inhalation exposure has occurred, humidified air or oxygen should be provided. If signs of hypoxemia are present, humidified supplemental oxygen should be administered.

Intubation of the trachea or an alternative airway management should be considered in cases of respiratory compromise. When the patient’s condition precludes this, consider cricothyrotomy if equipped and trained to do so.

If nitric acid was in contact with the skin, chemical burns may result; treat as thermal burns: adequate fluid resuscitation and administration of analgesics, maintenance of the body temperature, covering of the burn with a sterile pad or clean sheet.

After eye exposure chemical burns may result; treat as thermal burns. Immediately consult an ophthalmologist.

Note: Any facial exposure to liquid nitric acid should be considered as a serious exposure.

In case of ingestion of nitric acid, **do not induce emesis. If signs or symptoms of esophageal irritation or burns are present, consider endoscopy to determine the extent of the injury; in severe cases surgical intervention should be considered if gastrointestinal necrosis or perforation is suspected.**

Only **if a large dose has been ingested less than 30 minutes before evaluation** of the patient’s condition and if a perforation can be excluded, consider immediate gastric lavage with a small-bore tube.

To the standard intake history, physical examination, and vital signs add pulse oximetry monitoring and a PA chest X-ray.

Spirometry should be performed. Routine laboratory studies should include a complete blood count, blood glucose and electrolyte determinations. Arterial blood gases and methemoglobin concentrations should be used to assess for the presence of acidosis and methemoglobinemia in symptomatic patients.

Evidence of pulmonary edema - hilar enlargement and ill-defined, central-patch infiltrates on chest radiography - **is a late finding that may occur as late as 24 hours after exposure. The chest X-ray is typically normal on first presentation to the emergency department even with severe exposures.**

Patients who have possible exposure or who develop serious signs or symptoms should be observed for a minimum of 24 hours and reexamined frequently before confirming the absence of toxic effects. Delayed effects are unlikely in patients who have minor upper respiratory symptoms (mild burning or a slight cough) that resolve quickly.

If oxygen saturation is less than 90 % or if it appears to drop, immediately check arterial blood gases and repeat the chest X-ray.

If blood gases begin to show deterioration and/or if the chest X-ray begins to show pulmonary edema start oxygen supplementation.

Should it become clear that pulmonary edema is worsening positive end-expiratory pressure (PEEP) therapy should be started within the first 24 hours after exposure even if oxygenation can be maintained by mask.

Early indication for PEEP therapy is tachypnea (>30/min) with a simultaneous decrease of the partial pressure of carbon dioxide.

An inadequate increase or a relative decrease of the partial pressure of oxygen despite hyperventilation indicates the development of pulmonary edema. Fluid intake/output and electrolytes should be monitored closely.

Avoid net positive fluid balance. Central line or Swan-Ganz catheterization might be considered, to optimize fluid management.

Further evaluation and treatment
As long as signs of pulmonary edema are present, intravenous administration of 1 g methylprednisolone (or an equivalent steroid dose) should be continued in intervals of 8-12 hours.

Patients with bronchospasms should be treated as follows:

a) Aerolized β2-selective adrenergic agonist, e.g. 4 puffs of terbutaline, or salbutamol, or fenoterol from a metered dose inhaler (1 puff usually contains 0.25 mg terbutaline sulfate, or 0.1 mg salbutamol, or 0.2 mg fenoterol, respectively); may be repeated once after 10 min.

b) If inhalation is not possible, terbutaline sulfate (0.25-0.5 mg) subcutaneously or salbutamol (0.2-0.4 mg over 15 min) intravenously.

c) If a) is not effective or insufficient: theophylline (5 mg/kg body weight intravenously over 20-30 min).

Prophylactic antibiotics are not routinely recommended, but may be used based on the results of sputum cultures. Pneumonia can complicate severe pulmonary edema.

Patient release/
follow-up instructions

Asymptomatic patients exposed to an airborne concentration of less than 10 ppm as well as patients who have a normal examination and no signs or symptoms of toxicity after observation for 24 hours may be discharged in the following circumstances:

a) The evaluating physician is experienced in the evaluation of individuals with nitric acid or irritant pulmonary exposures.

b) Information and recommendations for patients with follow-up instructions are provided verbally and in writing. Patients are advised to seek medical care promptly if symptoms develop or recur.

c) The physician is comfortable that the patient understands the health effects of nitric acid.

d) Site physician is informed, so that the patient may be contacted at regular intervals in the 24-hour period following release from the emergency department.

e) Heavy physical work should be precluded for up to 24 hours.

f) Exposure to cigarette smoke should be avoided for 72 hours; the smoke may worsen the condition of the lungs.

Patients who have serious skin or eye injuries should be reexamined in 24 hours.

Post discharge spirometry should be repeated until values return to the patient’s baseline values.

In this document BASF has made a diligent effort to ensure the accuracy and currency of the information presented but makes no claim that the document comprehensively addresses all possible situations related to this topic. This document is intended as an additional resource for doctors at hospitals/emergency departments in assessing the condition and managing the treatment of patients exposed to nitric acid. It is not, however, a substitute for the professional judgement of a doctor and must be interpreted in the light of specific information regarding the patient available to such a doctor and in conjunction with other sources of authority.