Lupranol BALANCE 50

UTECH Europe 2009 Conference
MECC, Maastricht, The Netherlands

Jens Müller, Elastogran GmbH, Germany
Wouter Van Biesen, Elastogran GmbH, Germany
Dr. Peter Saling, BASF SE, Germany
Agenda

1. BASF Sustainability
2. Lupranol BALANCE 50
3. Eco-Efficiency Analysis
4. Results
Agenda

1. BASF Sustainability
2. Lupranol BALANCE 50
3. Eco-Efficiency Analysis
4. Results
“For us, sustainable enterprise means combining economic success with environmental protection and social responsibility, thus contributing to a high quality of life for coming generations.”

CEO, Jürgen Hambrecht
BASF 2015
Four strategic guidelines for long-term success

Earn a premium on our cost of capital

Help our customers to be more successful

Form the best team in industry

Ensure sustainable development

The Chemical Company
Sustainable development
Long-term economic success

BASF 2015:
“Ensure sustainable development”

- Integrate sustainability in customer relationships
- Develop new target groups and markets
- Identify relevant sustainability issues
- Develop tailored solutions
- Reduce reputational risks
- Transparent communication
Agenda

1. BASF Sustainability
2. Lupranol BALANCE 50
3. Eco-Efficiency Analysis
4. Results
Castor Oil Basics

- fast growing plant
- 40 – 50 % oil content
- application in medicine, cosmetic and industry
- OH-functional non-edible vegetable oil
Castor Oil Cultivable Area

- Instead of plantation, little patches on middle sized acreages
- Farming with little or no irrigation
- No pesticides and nearly no fertilizer
- Truly GMO free crop
- Co-crop aside of millet, corn, etc.

(Statement Alberdingk Boley November 2007)

Castor seed 1,28 Mio t/a
Castor oil 0,53 Mio t/a

1) Alberdingk Boley: Rizinussaatarten Februar 2008
Lupranol BALANCE 50
DMC: Double-metal cyanide catalysis

- Neutral
- No saponification
- No ring-formation of ricinoleic acid
- Low in odors

ODOR!
Lupranol BALANCE 50
Polyol Properties

- OH-Number: 50 mg KOH/g
- Functionality: 2.7
- Viscosity: 725 mPa·s
- Excellent Odor: 1.2
- Biomass: 31 %
Lupranol BALANCE 50

- Good processing profile
- Good mechanical properties
- Low emission – Low odor
- 25 % of renewable raw material in the foam
1. BASF Sustainability
2. Lupranol BALANCE 50
3. Eco-Efficiency Analysis
4. Results
Environmental Profile „From the Cradle to the Workgate“

Environmental impact over the entire life cycle*

<table>
<thead>
<tr>
<th>Consumption of Energy</th>
<th>Emissions</th>
<th>Toxicity Potential</th>
<th>Risk Potential</th>
<th>Consumption of Raw Materials</th>
<th>Land Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Described by Primary Energy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Fossil and renewable resources are included before production or harvest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Described by categories</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Air</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Solids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Definition for hazardous materials used by EU law</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Maximum possible hazard used</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Risk assessment approach</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Based on published statistical data (e.g. insurance associations)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Materials are weighted according to reserves and global consumption</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Index calculated by assessment criteria and impact factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Data acquisition and calculation is done according to ISO 14040 and 14044 (ecological part)
System boundaries
Compare Slab-Polyol vs. Lupranol BALANCE 50
System boundaries
Production Slab Polyol

Starter based on fossile raw materials

Slab Polyol

3 %

Fossile raw materials

3 %

production foam

phase of value

utilization disposal

identic
System boundaries
Production Lupranol BALANCE 50

- Castor Oil 31%
- Fossil raw materials 39%

BALANCE 50
production foam
identic phase of value
utilization disposal
Ecological Fingerprint

- **Tox potential**
- **Risk potential**
- **Resource consumption**
- **Land Use**

Graph Details:

- 1 = max. environmental impact
- 0 = min. environmental impact

Legend:

- Orange = Slab Polyol
- Green = BALANCE 50
TOX potential

TOX Points calculated Mio / t

minus 28 % tox-rating
Risk potential

Risk Points calculated / t

- fire risk
- explosion risk
- workplace accidents
- occupational disease

Slab Polyol

BALANCE 50
Resource consumption

kg/(a*Mio t)\(1/2\) / t

Slab Polyol

BALANCE 50
Weighted Land-Use $m^2 a / t$

- Arid to semi-arid climates are ideal
- Improved yield via hybrid castor seeds
- Productivity 1087 kg/ha

$100 m \times 65 m = 6500 m^2$

$= 1000 kg$

Lupranol BALANCE 50
Energy consumption

![Graph showing energy consumption comparison between Slab Polyol and BALANCE 50.]

Delta:
- 10100 MJ / t
- ≈ 2800 kWh
- Equivalent to 98,000 homes energy consumption/month

(US conventional polyols substituted by BALANCE 50)
Emissions
Waste accumulation

- Slab Polyol
- BALANCE 50

nt / t

minus 50 % waste disposal
Emissions
Global warming potential

27 % less global warming potential
Emissions
„Acid Rain“ – SO₂-Emissions

8 % less SO₂ emission

kg SO₂ Equivalent / t

Slab Polyol

BALANCE 50
Ecological Fingerprint Results

1 = max. environmental impact
0 = min. environmental impact

Tox potential
Risk potential
Resource consumption

Emissions
Energy consumption
Land Use

= Slab Polyol
= BALANCE 50

1 = max. environmental impact
0 = min. environmental impact
Agenda

1. BASF Sustainability
2. Lupranol BALANCE 50
3. Eco-Efficiency Analysis
4. Results
Results

- higher land-use
- limited competition with food chain

+ up to 25% of bio-mass in resulting PU foam
+ less energy consumption
+ less resource consumption
+ less global warming potential
+ less SO₂ emission („Acid Rain“)
+ more ecologically friendly
Results

Validated Method
Eco-Efficiency Analysis
Thank you for your attention!