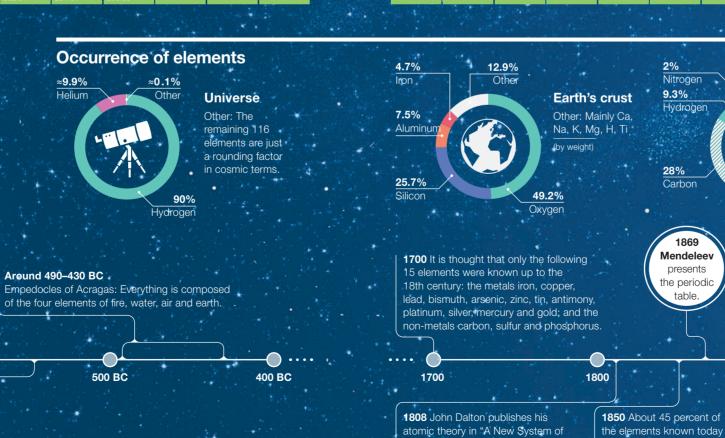
million per gram Californium is the most expensive element. The price tag is explained by the high cost of production. Created in nuclear reactors and particle accelerators. it is a powerful neutron emitter that is used to detect oil or precious metals in inaccessible places.

Carbon is the building block of life - every plant and animal contains it. But diamonds. charcoal. oil and graphite are also made of it. For BASF, carbon is an important element in the production of numerous products. The vast majority of carbon comes from fossil feedstock. In addition, renewable resources are also used as carbon sources in the existing Production Verbund, for example as part of the biomass balance approach.

Discovering elements

When the German alchemist Hennig Brand discovered phosphorus in 1669, he became the first person to isolate an element. His method involved evaporating urine and then heating the residue. Today, the hunt for element 119 requires smashing charged particles together at about 30,000 kilometers per second in the hope that their two nuclei fuse. To do this you need a linear particle accelerator and a small fortune.

Is that really it?


How do we know there are no more natural elements? Uranium, with 92 protons in its nucleus, is the last naturally occurring element in the table. The trouble with all the elements after uranium is that they have too many protons to be stable for any useful length of time. Their half-lives are just seconds or milliseconds. Heavier, unstable elements may exist elsewhere in the universe in more extreme environments, but here on earth they have to be produced by smashing atoms together

700 BC

16

Cm

Bk

Chemical Philosophy." According to

this, material is composed of atoms.

G

• q

Co

Rh

Mt

Fe

Ru

Os

Hs

Mn

Тс

Re

Bh

	line di <mark>nom</mark>	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	- Sector					
	Nu	mber						
	S	Symbol Name		13	14	15	16	17
				⁵		7 N	8	9
								- · ·
	Atomic Mass		Boron 10.81	Carbon 12.011	Nitrogen 14.007	Oxygen 15.999	Fluorine 18.998	
			¹³ AI	¹⁴ Si	15	¹⁶ S	¹⁷ C	
		*						
	10	. 11	12	Aluminum 26.982	Silicon 28.085	Phosphorus 30.974	Sulfur 32.06	Chlorine 35.45
	²⁸ Ni	²⁹ Cu	³⁰ Zn	³¹ Ga	³² Ge	³³ As	³⁴ Se	³⁵ B
	Nickel 58.693	Copper 63.546	Zinc 65.38	Gallium 69.723	Germanium 72.630	Arsenic 74.922	Selenium 78.971	Bromine 79.904
	⁴⁶ Pd	⁴⁷ Ag	⁴⁸ Cd	⁴⁹ In	50 Sn	⁵¹ Sb	⁵² Te	53
	Palladium 106.42	Silver 107.87	Cadmium 112.41	Indium 114.82	Tin 118.71	Antimony 121.76	Tellurium 127.60	lodine 126.90
	⁷⁸ Pt	⁷⁹ Au	[®] Hg	⁸¹ T	⁸² Pb	⁸³ Bi	⁸⁴ Po	⁸⁵ A
	Platinum 195.08	Gold 196.97	Mercury 200.59	Thallium 204.38	Lead 207.2	Bismuth 208.98	Polonium	Astatine
	¹¹⁰ D S	¹¹¹ Rg	¹¹² Cn	¹¹³ Nh	¹¹⁴ F	¹¹⁵ MC	¹¹⁶ Lv	¹¹⁷ T
	Darmstadtium	Roentgenium	Copernicium	Nihonium	Flerovium	Moscovium	Livermorium	Tenness
•			•					
	⁶⁴ Gd	⁶⁵ Tb	66 Dy	⁶⁷ Ho	⁶⁸ Er	⁶⁹ Tm	⁷⁰ Yb	⁷¹ Lι
	Gadolinium 157.25	Terbium 158.93	Dysprosium 162.50	Holmium 164.93	Erbium 167.26	Thulium 168.93	Ytterbium 173.05	Lutetium 174.97

Mc

1869

presents

table

were only discovered in

the 19th century.

Fm

No

Around 624-545 BC Thales of Miletus: Water is the original substance of which material is composed.

600 BC

nature.

1900

Lithium is a metal so light it can float on water. Lithium-ion batteries have a lot of power for little weight, which is useful for powering devices such as electric vehicles and laptops. But lithium can also be used as a psychiatric medication.

Helium, unlike all the other elements was found on the sun before it was found on earth, which is why it was named after the Greek god of the sun. It is one of the noble gases, yet today you are most likely to come across it in a party balloon.

22.59

High density Osmium is the densest of the elements at 22.59 grams per cubic centimeter. Twice as dense as lead, it is used for fountain pen nibs and phonograph needles.

4.6% Other

Humans

Other: Mainly Ca, CI, P, K, S (by weight)

56.1% Oxygen

1939 Francium is the last element to be discovered in

2016 IUPAC approves the last new elements to date - those with the numbers 113, 115, 117 and 118. The new elements are super-heavy and extremely short-lived.

2000

1937 Technetium, the first artificial element,

1944 Curium and Americium are discovered. Both are highly radioactive.

2050