Future Challenges and Opportunities for the Agricultural Industry

Peter Oakley
Member of the Board of Executive Directors

August 2005
1 | Challenges for Agriculture

2 | The Future of Agriculture

3 | Growing the Future
Less Land for More People

Population growth and rising meat consumption are driving the increasing demand for agricultural products.

Population:
- 1960: 3.0bn
- 1980: 4.4bn
- 2005: 6.5bn
- 2025: 7.9bn

Available arable land per capita (m²):
- 1960: 4,300
- 1980: 3,000
- 2005: 2,200
- 2025: 1,900

Source: UN, FAO and BASF estimates.
Emerging demand for agricultural products is driven by higher oil prices and technological progress in biotechnology.
Challenges for Agriculture

- Higher Food Demand
- Emerging Industrial Demand

→ Agricultural productivity needs to be almost doubled in 20 years*

*Basis: major commodities such as soybeans, corn, wheat and oilseed rape
Qualitative Aspects of Agricultural Productivity

- Better and healthier food
- Continual reduction of ecological footprint
Conclusions

1. Only gradual improvement of agricultural practices is not going to accomplish these tasks.

2. The challenge requires break-through innovations leading to true ‘technological leaps’.

3. Innovative agrochemicals, ‘white’ and ‘green’ biotech will play a major role in providing solutions.
1 | Challenges for Agriculture

2 | The Future of Agriculture

3 | Growing the Future
The Future of Agriculture: Our Vision
Tomorrow’s Key Technologies
New Fungicides, Insecticides & Herbicides:

• New generation agrochemicals provide better control and are even more favorable on the environment

• Nature constantly creates new opportunities through the spread of new diseases and insects (population shifts) and through resistance to chemicals and traits
Advanced Seed Treatment Chemicals:

- Seeds are treated with crop protection chemicals, protecting the plant from the start until late in the season.
- Growers can reduce the number of spray applications (lowering labor costs and environmental impact).
Plant Health Chemicals:
Growers apply innovative chemistry that strengthens the plant, improving its health, yield and quality
Biotechnology (Input and Output Traits):

Plants are genetically modified to contain new traits, e.g.:

- Herbicide resistance
- Improved tolerance to drought
- 30% higher yield
The Future of Agriculture: Our Vision

Tomorrow’s Key Technologies

<table>
<thead>
<tr>
<th>Protecting the Crop</th>
<th>Innovative Chemistry</th>
<th>Green Biotech</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrochemicals</td>
<td>Input Traits</td>
<td></td>
</tr>
<tr>
<td>Improving Quantity and Quality</td>
<td>Plant Health</td>
<td>Output Traits (Agronomic Traits)</td>
</tr>
</tbody>
</table>
Plants as Factories:

- The canola plant has new genes that produce poly-unsaturated fatty acids (PUFAs).
- As a food additive, these substances help prevent cardiovascular diseases.
- In the past PUFAs were extracted from fish and algae.
White Biotechnology
(biological production in closed systems):

• Bacteria produce chemicals
 Example: acrylic acid, a product that is
today the starting point for a whole chain
of classic chemicals (e.g. dispersions and
superabsorbents)

• Agricultural products such as sugar, corn
or oilseed serve as raw material for these
biofactories
The Future of Agriculture: Our Vision
Biofactories and Biomaterials

Green Biotech
Output Traits (specialty & bulk chemicals)

White Biotech
Industrial Enzymes

Fermentation & Biocatalysis
The Future of Agriculture: Our Vision
Biofactories and Biomaterials

More Than Food Production
Biofactories
Biomaterials and Systems

Value Chains
Nutrition
Health Care
Personal Care
Energy
Paper
Textiles
Coatings
...

BASF
The Chemical Company
1 | Challenges for Agriculture
2 | The Future of Agriculture
3 | Growing the Future
Growing the Future
The Three Differentiators of Our Strategy

Commitment to Profitable Growth

Value Chain Perspective
Unique Technology Toolbox
Culture of Innovation
Needs of Our Customers
Example: Paper Industry

Customer Needs
• Improve paper quality
• Optimize processing costs
• Save energy and resources
• Replace non-biodegradable inputs
Solutions for an Entire Industry
Example: High-Starch Potato

Value for BASF

BASF

Seed Treatment

Seed Producer

Agro-chemicals

Starch Potato Farmer

Potato Trait Fee

Potato Starch Factory

Traditional Specialty Chemicals

Paper Producer

Micro Tubers → Seed Potatoes → Seed Potatoes → Starch Potatoes → Starch → Paper

Value Chain Perspective
Unique Technology Toolbox
Culture of Innovation
Unique Flexibility to Choose the Best Long-Term Technology

Innovative Chemistry
- Carotenoids
- Amino Acids (e.g., lysine)
- Vitamins (e.g., vitamins E, B₂, C)

White Biotech
- Carotenoids
- Amino Acids (e.g., lysine)
- Vitamins (e.g., vitamins E, B₂, C)

Green Biotech
- Carotenoids
- Amino Acids (e.g., lysine)
- Vitamins (e.g., vitamins E, B₂, C)

- Technically possible
- BASF Production Today

Value Chain Perspective

Unique Technology Toolbox

Culture of Innovation
Leadership in R&D for Fungicides

<table>
<thead>
<tr>
<th>1st Generation Azoles</th>
<th>2nd Generation Strobilurins</th>
<th>3rd Generation Boscalid</th>
<th>4th Generation BASF</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASF launches the blockbuster epoxiconazole in 1993. This product is still the best azole in the market today</td>
<td>BASF discovers the strobilurin class of chemistry and launches in 1996 kresoxim-methyl and later F 500®</td>
<td>BASF introduces boscalid, a new benchmark in specialty crops with novel mode of action</td>
<td>BASF is already developing the next generation of novel fungicides</td>
</tr>
</tbody>
</table>
Innovation Goes Far Beyond Traditional Product R&D

- Agrochemicals: Focus on **new ‘modes of action’** (product generations) instead of ‘me-too’ research on old chemical classes

- Biotechnology: Focus on the discovery of **genes with unique properties**

- **Innovation culture across the entire organization** with high degree of entrepreneurship and multidisciplinary teamwork

- Wide spread **network of cooperations** with leading innovators
Commitment to Profitable Growth is Our Primary Target

• We focus on high-value markets
• We aim to grow faster than our competitors
• We enter new markets only where we have a competitive advantage
• We constantly search for attractive new technologies
• We build strong relations with customers
• We strive to be a benchmark in what we do
This presentation contains forward-looking statements under the U.S. Private Securities Litigation Reform Act of 1995. These statements are based on current expectations, estimates and projections of BASF management and currently available information. They are not guarantees of future performance, involve certain risks and uncertainties that are difficult to predict and are based upon assumptions as to future events that may not prove to be accurate.

Many factors could cause the actual results, performance or achievements of BASF to be materially different from those that may be expressed or implied by such statements. Such factors include those discussed in BASF’s Form 20-F filed with the Securities and Exchange Commission. We do not assume any obligation to update the forward-looking statements contained in this presentation.