
BASF We create chemistry

BASF Research Press Conference on December 9, 2021

Hybrid wheat unlocking wheat's full potential

Prof. Edward Souza Global Head of Wheat Breeding

The right balance for better yield

Yield that is valued by society

More biodiversity protection

Higher yield with lower environmental impact

Less CO₂ per ton of protein produced

Help farmers make a living

BASF Research Press Conference 2021

The demand for wheat will increase in the coming years

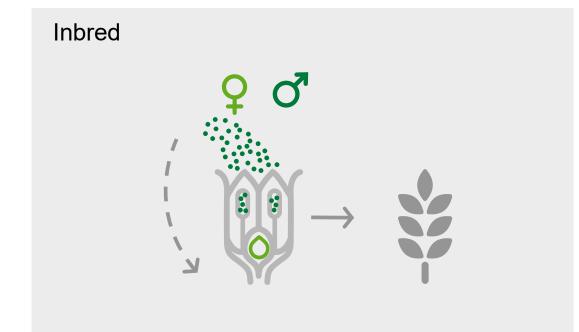
+2 billion

growth of world population by 2050

> +50%

wheat supply increase needed

Yield increases of ~3% annually during 1960s to 1980s, but this declined to less than half that rate in the last 30 years.


How to sustainably grow global wheat yields?

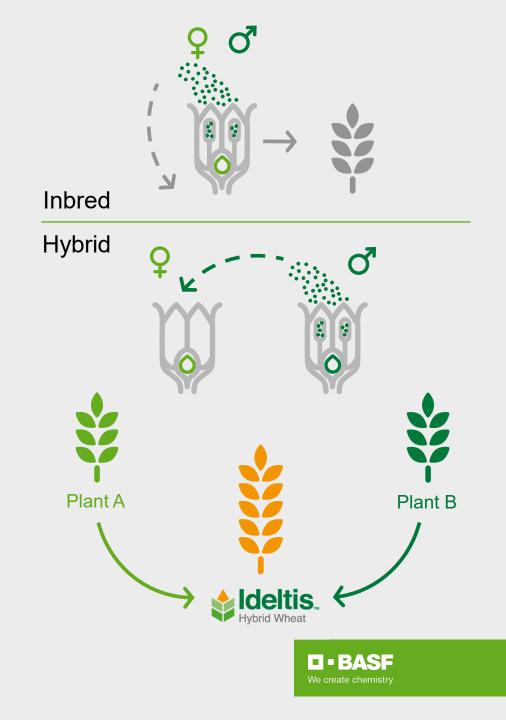
Until now, wheat seeds are cultivated through inbred varieties

- Wheat naturally self-pollinates, where the plants are fertilized by their own pollen
 - Often combine genes from a limited, local genetic pool
 - As a result, all wheat carry uniformity at each locus or position in the chromosomes
 - Lacks an increase of genetic diversity to meet demands of production and climate resilience
- Limitation of inbred varieties
 - More time, natural resources and inputs needed for inbred varieties to meet required yields

BASF Research Press Conference 2021

Unlocking the full potential of wheat with hybrid seeds

- Improved agricultural outcomes and land use result from hybridization of major market crops, such as corn (maize) and rice
- Why are commercial wheat hybrids not yet available for growers?
 - The wheat genome is 7 times larger than corn and 40 times larger than rice
 - More variability when combining genes
- Breakthrough technologies needed to manage complexity of wheat and stabilize desirable traits into hybrids


The advantage of hybridization is the improvement in genomic diversity

Hybrid breeding programs balance yield and genetic diversity

- Our wheat hybrids are the result of directed crosses between genetically distinct parents
 - Relies solely on the cross-pollination of pre-existing and naturally occurring genetic diversity
- Hybridization allows combination of the best traits from the parents in the offspring
 - For example, genes for disease and insect resistance and environmental stress tolerance
- Ideltis[™] hybrid wheat
 - Yield increase over inbred varieties due to hybrid vigor

Hybridization improves yield and yield stability delivering climate resilience

7

Our wheat breeding program enables improved genetic selection through curated technology combinations

IOIO GPS-driven planters and combines

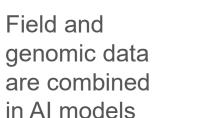
. . .

Near-infrared units measuring grain protein in field

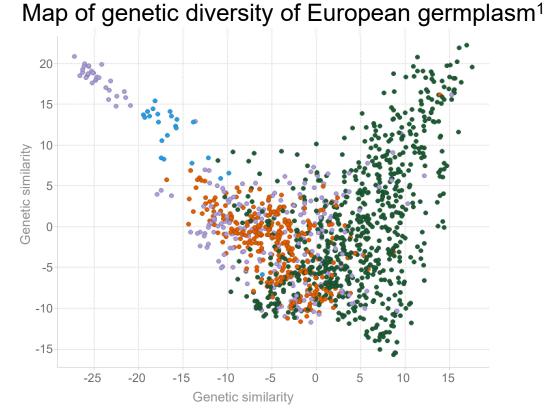
Automated

collection

data


Genotyping by sequencing (GBS)

Drone-based phenotyping



🗖 • BASE

Data interpreted by experienced breeders

Harnessing the genetic diversity of elite germplasm

- Wheat varieties grown today trace back to many different lineages
 - Diversity of genes for adaptation, stress tolerance, baking quality, grain yield
 - Each lineage is a different evolutionary solution to the environmental stress in the region of origin
- Hybrids combine these solutions into stacks within a variety to manage seasonal unpredictability
 - Field testing all parental combinations would require replicated testing of millions of hybrid combinations across a farming region

Our breeding programs predict combinations of parents to create the best hybrids

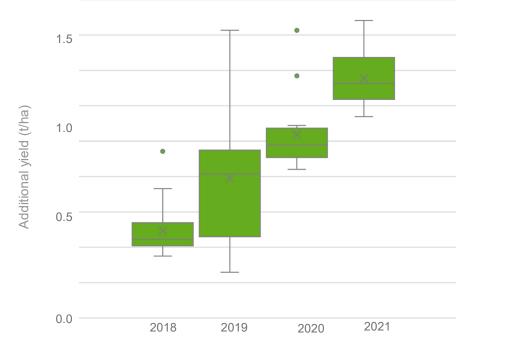
¹Hybrid parents color-coded by mating pools. Each point is a single type of wheat, when closer together represents more genetic similarity Measured by Multi-dimensional scaling (MDS)

Genomic selection enables delivery of hybrid wheat genetics

Selection via modeling¹

New parents are

- Discarded, if they do not meet minimum requirements for use by farmers, for example: plant height, maturity, and disease resistance
- Genotyped by sequencing (GBS)
- Selected from the remaining lines and modeled for their expected yield as hybrids
- Combination of expected performance models with breeder expertise of the germplasm to select candidate parents

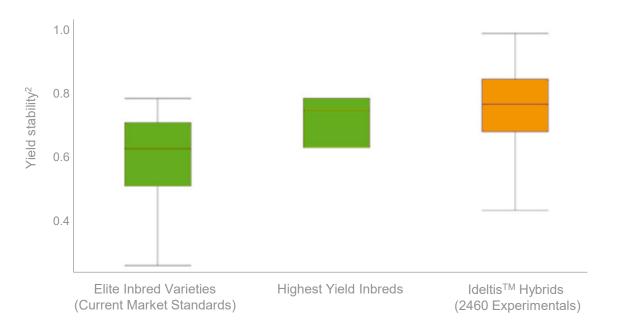

Hybrid candidates are selected for farm and sustainable market goals

BASF Research Press Conference 2021

Success of predictive breeding program delivers improved regional varieties

Yearly improvement of hybrid performance¹

- Yield is increasing while selecting for background adaptions in agronomic traits such as resource efficiency as well as protein content and quality
- Models improve as years of data accumulate and added complexity of environments are included


Our research program selects traits and adapts new varieties to local climate conditions through targeted selection

¹Source: Central & Southern French breeding program, comparing 20 highest yielding hybrids in each year,

Yield stability is key for improved regional land and resource use in changing conditions

Yield stability of experimental hybrids vs. inbreds¹

Yield stability

- Measured as expected yield vs actual yield
- Stable varieties produce expected yields year over year – despite changing environmental variables, such as disease, water availability

Benefits from stability

- Better climate resilience
- Predictable and reliable use of resources
- Improved ability to synergize with other agricultural inputs like crop protection and prediction models

Yield stability in hybrids allows management of seasonal unpredictability for climate resilience

Hybrid breeding is fundamental to the future of wheat innovation

- Ideltis[™] hybrid wheat will help meet the nutritional needs of a growing population through improved and stable yields
- Contributes to our sustainability commitments

- Ideltis[™] hybrid wheat employs genetic diversity for climate resilience, yield improvement, productive land use and resource efficiency
- Stability from hybrid wheat serves as basis to integrate technologies like precision, crop protection and digital farming tools across wheat cultivation

We create chemistry