

BASF Research Press Conference on December 9, 2021

# Performance materials enable sustainable mobility

#### **Dr. Simon Kniesel**

Group Leader R&D Ultramid<sup>®</sup> Engineering Plastics Europe

# Safe, cost-efficient and easy-to-use solutions for electric vehicles

The chemical content is **2.5 times higher (by value)** in a battery electric vehicle compared to a car with an internal combustion engine:

#### Powertrain

(e.g., cathode active material as key component of any battery cell)

- Coolants
- Plastics
- Coatings

   (e.g., to protect against corrosion)



#### Transformation of the powertrain affects the entire vehicle



# High-performance material solutions enabling sustainable mobility



High-voltage lines are the veins of an electric vehicle and enable **safe power distribution** 

Thermally conductive adhesives enable thermal management in batteries

Long-term color-stable orange engineering plastics enable **safe handling of high-voltage cables** 

E-mobility requires new safety concepts to enable **passenger safety** 

Plastic content will increase during the transformation to all-electric powertrains



**BASF Research Press Conference 2021** 

#### **Enabling safe power distribution**

#### High-voltage lines are the veins of an electric vehicle

#### Challenges and requirements:

- Busbars can be found in many parts of the battery electric vehicle:
  - Differences in thermal expansion of metal conductor and plastic can lead to cracks
  - ► High electric isolation and flame retardancy needed







# **Enabling safe power distribution**

#### New Elastollan<sup>®</sup> for busbars

#### Solution:

- New Elastollan<sup>®</sup> is highly compatible with metallic busbars:
  - Coefficient of Linear Thermal Expansion (CLTE) close to metallic busbars (copper, aluminum)
  - No phase transformation in the relevant temperature range
  - Superior thermomechanical stress resistance between -40°C and 120°C (>1,000 cycles)
- Easy to process and cost-efficient

First series in realization with a French Tier 1





# **Enabling thermal management in high power batteries**

#### Challenges and requirements:

- Cells heat up during (fast) charging and driving
  - Optimum operating temperature 20°C–40°C
  - Battery cells must not be charged below 0°C or operated above 80°C

Increasing energy densities require a high heat transfer

- Adhesives connect the cells to the cooling plate
  - High thermal conductivity is needed (1-3 W/mK)

Challenges that require new material solutions





# **Enabling thermal management in high power batteries**

Thermally conductive 2K-polyurethane\* adhesives for batteries

Solution:

Combination of the versatility of polyurethane with best fit of thermally conductive additives



#### Innovative formulation fullfills high demands for:

- Flowability and required pressing force
- Thermal conductivity and thermal stability

Adhesion

Thermally conductive 2K PU\* adhesives: simulation supported formulation development



High flowability and processability at 75 vol% filler loading Thermal conductivity of 3 W/mk



## **Enabling safe handling of high-voltage cables**

#### Challenges and requirements:

- The orange color RAL 2003 is the standard signal color for high-voltage connection e-mobility applications in electric vehicles
- Color stability requirement: 1,000h at 140°C
- Polyamides tend to severe discoloration during heat ageing



Long-term color-stable orange needed



# **Enabling safe handling of high-voltage cables**

## Solution:

Durable orange-colored applications through novel polyamide (PA) formulation and designed pigment formulation



Portfolio of long-term color-stable orange Ultramid®



# **Enabling passenger safety**

#### Challenges and requirements:

- Trend toward shortened frontend
- Need for crash protection of the battery B
- Higher overall vehicle weight



New vehicle architecture requires new safety concepts



# **Enabling passenger safety**

#### Solutions:



High-energy-absorbing **plastic frontend** realized in co-creation with a global OEM

3D formed **crash absorbers** from **polyamide particle foam** with high energy absorption (structural parts in car bodies)

High stiffness and energy absorbing **pultruded polyurethane** and **thermoplastic profiles** 

New material classes for next-level crash safety



# Facing the sustainability challenge in e-mobility – next steps

Our contribution to sustainable mobility



Decarbonization of mobility requires a broad portfolio of material solutions – BASF is the partner of choice for the automotive industry



# **BASE** We create chemistry