Life cycle assessment (LCA) for ChemCyclingTM

Mechanical recycling remains the preferred recycling solution if proven to be ecologically most beneficial, technologically possible, and economically feasible. However, there are also plastic waste streams that are not suitable for mechanical recycling. An example are mixed plastic waste fractions, consisting of various plastic types, which will not be sorted further for mechanical recycling due to economic reasons. This means that they are most likely incinerated, and the resulting energy is used to generate steam or electricity. In this case, chemical recycling is the better option. Chemical recycling complements mechanical recycling and can be a more sustainable solution than incineration or landfill of plastic waste. It thus contributes to a circular economy and the responsible use of resources.

An LCA study conducted by Sphera for BASF, which was reviewed by three independent experts, comes to the clear conclusion that chemical recycling (pyrolysis) of mixed plastic waste emits 50% less CO2 than incineration of mixed plastic waste.

The study also compares the CO2 emissions of plastics produced with pyrolysis oil under a mass balance approach with conventional plastics made from fossil naphtha. It arrives at the conclusion that chemically recycled plastics cause significantly lower CO2 emissions than those produced from primary fossil resources. The lower emissions result from avoiding the incineration of mixed plastic waste.

Moreover, the LCA study found that manufacturing of plastics via either chemical recycling (pyrolysis) or mechanical recycling of mixed plastic waste results in similar CO2 emissions. It was taken into account that the quality of chemically recycled products is similar to that of virgin material and that usually less input material can to be sorted out than in mechanical recycling.

More detailed information on the results can be found in the download area. The complete study can be requested by persons with legitimate interest at

The results of this LCA study are comparable to those of a study from CE Delft 
commissioned by the Dutch government.