Spain
Innovation

Battery materials

Electric cars have been painted as part of the solution to reduce emissions globally, but many people remain wary about their practicality. What if our innovations in battery materials help to double the real driving range of a typical midsize car to 600 km, on a single charge? And what if we could reduce the charging time to 15 minutes by 2025? 

Our innovations in battery materials will help to make e-mobility fit for everyday use. Wouldn't it be great to recharge your e-car in 15 minutes and continue a 600 km drive by 2025? And wouldn't it be nice to recharge yourself from daily stress in those 15 minutes?

We asked the same questions to independent filmmakers. This is how they would recharge themselves in 15 minutes: 

Unplug you Mind_Video.PNG
Ozum Bobaroglu Domianus  
Unplug your Mind
The Meaning of Life_Video.PNG
Troy Brown 
The Meaning of Life
A_Family_Affair.jpg
Antoinette Westcott & Jonathan Fishman  A Family Affair

Recharging in 15 minutes

How would you recharge yourself in 15 minutes while recharging your e-car? Share on TwitterFacebookInstagramLinkedIn
#15MinuteRecharge #Reason4Optimism #15MinutePitStops

 

Learn more about the films and their producers

20731857_Icons_Screen6.jpg

Driving 600 km on a single charge

By 2025, our innovations in battery materials aim to double the real driving range of midsize cars from 300 to 600 km on a single charge — regardless of whether the air conditioning is running or the music is turned up at full blast. 

Thanks to our innovative battery materials, we are optimistic about the future of e-mobility. This is symbolized in the picture below. In a combined 600 km journey in Los Angeles and Shanghai, a message is "written" in the streets by GPS: "keep being optimistic". 

20731857_Icons_Screen5.jpg
Keep being optimistic_without actors

This is how we're shaping the future of e-mobility

Cathode active materials are central to the performance, affordability, reliability and sustainability of advanced electric vehicle batteries. Our researchers use a comprehensive "toolbox" of different methods to influence the properties of the materials: from the composition of the metals, different particle sizes and distributions, to the adjustment of porosity and surface properties.

Have a look over the shoulders of our researchers and watch why battery materials make the difference.  

 

Sustainability
Our ambition is to create a sustainable battery materials value chain for electric vehicles. Electromobility is one of the key solutions to merge the global desire for individual mobility and the need to significantly reduce local emissions, especially in combination with renewable energy. As a global leading supplier of battery materials for lithium-ion batteries, we aim to contribute to sustainable battery materials value chain and make e-mobility a practical reality for everyone.

Learn more about our ambitions, responsible sourcing, our reduced CO2 footprint, recycling and circular economy.  

 

Digitalization accelerates research

We generate more than 100 million data points every day when we test our material in small test batteries. Machine learning and our supercomputer Quriosity help predict and analyze material properties, accelerating our research.

 

Where will our battery materials take you?

We believe the development of advanced emission control technologies and the increasing demand for electric powered cars will help reduce emissions and increase air quality on a global scale. Fewer emissions will make our world a better place to live by reducing the impact of air pollution in inner cities and creating a positive effect on the health of the population.

For latest news, please also follow our channel on LinkedIn. 

Deep dive into battery materials research

Related content

BASF forscht weltweit an innovativen Kathodenmaterialien, die die Elektromobilität weiter voranbringen. Innovationen der BASF für hochleistungsfähige Lithium-Ionen-Batterien helfen, die reale Reichweite eines Mittelklassewagens im Jahr 2025 von 300 auf 600 km zu verdoppeln und die Ladezeit von Elektroautos deutlich zu reduzieren. Die unterschiedliche Größe der einzelnen Kugeln bewirkt eine besonders dichte Packung der Kugeln in der Kathode. Eine solch dichte Packung resultiert in einem hohen Energieinhalt – die Voraussetzung für eine größere Reichweite von Elektroautos. Vergrößerung 3000:1 (bei 15 cm Bildbreite)

BASF Catalysts: Battery Materials

Our portfolio includes advanced cathode active materials for lithium-ion batteries like Nickel Cobalt Aluminum oxide and Nickel Cobalt Manganese oxide. 
DCIM\104GOPRO

BASF’s Automotive Solutions

Explore BASF’s multimedia stories to learn more about chemistry’s crucial role in the future of automotive innovations.